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SUMMARY

Tensile creep studies were conducted on polycrystalline Nextel 610 and Fiber FP alumina fibers with

grain sizes of 100 and 300 nm, respectively. Test conditions were temperatures from 800 to 1050 °C and
stresses from 60 to 1000 MPa. For both fibers, only a small primary creep portion occurred followed by

steady-state creep. The stress exponents for steady-state creep of Nextel 610 and Fiber FP were found to

be about 3 and 1_ respectively. At lower temperatures, below 1000 °C, the finer grained Nextel 610 had a

much higher 0.2 percent creep strength for 100 hr than the Fiber FP; while at higher temperatures,

Nextel 610 had a comparable creep strength to the Fiber FP. The stress and grain size dependencies sug-

gest Nextel 610 and Fiber FP creep rates are due to grain boundary sliding controlled by interface

reaction and Nabarro-Herring mechanisms, respectively.

INTRODUCTION

High temperature structural applications, such as, advanced gas turbine engines for civil transport
aircraft, have generated great interest in intermetallic and ceramic composites reinforced by high strength

continuous length fibers. The use temperatures depend upon a variety of fiber properties, such as, oxidation
resistance and creep. Because of their composition, alumina fibers can withstand extremely high temperatures

in an oxidizing atmosphere (ref. 1). However, in terms of creep behavior, fine diameter polycrystalline

alumina fibers (Fiber FP and PRD 166) with grain sizes of _-500 nm have recently been shown to possess
low tensile creep strengths of only 50 MPa at 1150 °C for 0.2 percent creep strain in 5 hr (ref. 2). At this

temperature, grain boundary diffusion and interface reaction creep were reported to control the creep pro-

perties. Recently a more finely grained polycrystalline alumina fiber, Nextel 610, has been developed by

the 3M Company. Because of its finer grain size (_100 nm), this fiber has a very high room temperature

tensile strength (ref. 3), but may creep more than previously available alumina fibers.

The primary objective of this study was to measure the tensile creep behavior of two polycrystalline

oxide fibers, Nextel 610 and Fiber FP, which have measurably different grain sizes. The purpose was to

understand whether the new Nextel fiber with improved room temperature strength offered any creep

strength advantages over the older FP fiber. Emphasis was placed on the low strain region below 1 percent

since this value is often quoted as the upper creep limit for structural composites. In addition, an analysis

was performed to identify the underlying mechanisms, especially in regards to the effects of grain size.

EXPERIMENTAL PROCEDURE

As indicated in table I, the compositions of the fibers used in this study were more than 99 percent

alumina with additions of SiO 2 and Fe20 3 for Nextel 610 and MgO for Fiber FP. These additives serve as
aids to consolidation and as microstructural control agents (in particular against grain growth). The

diameters of these fibers were nominally 14 and 20 _m for the Nextel 610 and Fiber FP, respectively.

Average grain sizes were 100 and 300 nm for the Nextel 610 and Fiber FP, respectively. Grain sizes were

measured using transmission electron microscopy (TEM) along with the line intercept method (about 50



grains were counted on TEM micrographs). TEM micrographs of the as-received Nextel 610 and Fiber

FP, shown in figure 1, reveal equiaxed, densely packed grains with no observable amorphous phase.

For this investigation tensile creep measurements were made by dead weight loading. The test tem-

peratures were in the range of 800 to 1050 °C with loading up to 100 hr. The tests were done mostly in
air, but some experiments were done in a vacuum of 10 -s Pa with no observable difference in the results.

In performing the elevated temperature tests, hot grips were used (fig. 2). The grip was constructed

by using a 125-#m sapphire fiber as top and bottom support wires and securing the fiber specimen with a

high temperature zirconia base cement (Sauereisen Cements Company, Pittsburgh, PA). This cement did
not interact with the specimen nor did it allow slippage at the temperatures and stress levels used in this

investigation. Small diameter (tungsten) wire hooks were used to minimized bending moments in the load

train. The specimen's gage length between the cemented ends was 25 mm. The fiber deformation was

monitored by a free floating cored LVDT (Schaevitz Engineering, Pennsauken, NJ). The displacement

sensor was interfaced with a computer to record the data. The furnace employed for this study was a Pt
wire wound tube furnace which allowed continuous operation in air up to 1150 °C with a hot zone length

of about 25 mm. The maximum gradient along the hot zone was within 6 ° C. A Pt-Rh thermocouple and

electroniccontrollerprovided a constant temperaturein the hot zone of_2 °C.

RESULTS

Typical results for fiber creep deformation versus time for the Nextel 610 and Fiber FP are shown in

figure 3. In this figure, creep data were taken from 900 to 1050 °C in vacuum and are compared with

Fiber FP data obtained from Pysher et al. (ref. 2) at 1150 °C in air. These data, which were obtained by

using hot grips with 25 mm long specimens, are in good agreement with Pysher's values which were
obtained by cold grip techniques with about 350 mm long specimens. For both fibers, only a small pri-

mary creep portion occurred, followed by steady state creep which dominated the deformation at each

temperature. In general, the FP fiber required lower stress than Nextel 610 to obtain the same order of

creep strain. At temperatures of 900 and 980 °C, and times up to 40 hr, creep deformations ranged from

0.1 to 0.4 percent; while at the higher temperature of 1050 °C, deformations on the order of 1 percent
were observed in 4 hr.

Figure 4 illustrates the temperature dependence of the steady state creep rates of Ca) Nexte! 610 and

(b) Fiber FP. In general, at low stresses, Nextel 610 had a lower creep rate than Fiber FP, but a compar-

able creep rate at high stresses, above _300 MPa at 980 °C and _500 MPa at 900 °C. Least squares fit

lines through the data _n figure 4 suggest a power law creep relation of _ _ a n. From the best fit lines,

the stress exponents n were determined to be 2 to 3 for the Nextel 610 and about 1 for Fiber FP. It can
also be seen that the data exhibit an increase in scatter with decreasing temperature.

Figure 5 illustrates the effects of temperature and grain size on the steady state creep rates of poly-

crystalline alumina material for a stress of 410 MPa and temperatures in the range of 800 to 1600 °C.
The steady-state creep rates of the Nextel 610 and Fiber FP from 800 to 1050 °C were determined from

figure 4. Data above 1050 °C in figure 5 were from Pysher et al. (ref. 2) for Fiber FP and from Heuer

et al. (ref. 4) for bulk alumina. These last data were extrapolated to 410 MPa for comparison with the
fibers. Based on best fit lines through the data, the creep rate of the Nextel 610 appeared to be higher

than that of Fiber FP and bulk alumina at higher temperatures. However, at lower temperatures below

about 1000 °C, Nextel 610 possessed a comparable creep rate to the Fiber FP. A possible reason for this

is a higher stress exponent for Nextel 610 than Fiber FP.



Theapparent activation energy for creep, Qcreep, can be obtained from the slope of the best fit line
using the following equation:

Qcreep = R Cltln(_ )/[A(1/T)] (1)

where R is the universal gas constant, _ is the creep rate (s-l), and T is the absolute temperature (K).

The Qcreep was determined to be about 460 kJ/mol for both Nextel 610 and Fiber FP from 800 to 1050 °C.
This value is somewhat lower than that of Pysher et al. (ref. 2) who reported to be 588 kJ/mol for Fiber FP

at 100 MPa. On the other hand, the 460 kJ/mol value from this study appears to agree with the bulk

alumina data and is similar to that of A1 cation activation energy for diffusion in bulk alumina at high

temperature (ref. 5).

The stress levels needed to obtain a creep deformation of 0.2 percent for times up to 100 hr are shown

as a function of temperature in figure 6 for (a) Nextel 610 and (b) Fiber FP. At 900 °C, the 0.2 percent

creep strength of NexteI 610 is much higher than that of Fiber FP for 10 and 100 hr, but at higher tempera-
ture the difference in strength decreases. The slope in figure 6, that is, the required stress difference between

10 and 100 hr for 0.2 percent creep strain, increases with increasing temperature. This may be due in part

to 0.2 percent creep occurring in different creep stages, such as, the late stage of steady-state creep at

lower temperatures and the early stage of steady-state creep at higher temperatures.

TEM micrographs of the creep tested Nextel 610 and Fiber FP are shown in figure 7. Equiaxed, densely

packed initial grains remained unchanged, suggesting a stable fine grain microstructure during creep testing
with no significant grain growth. At about 1 percent creep strain and the onset of the tertiary creep region

for Nextel 610, the TEM micrographs revealed no grain elongation to the tensile stress axis and no triple-

point fold or cavitation along the grain boundaries. Some void-like features in the grains are believed due

to an artificial effect formed during specimen preparation.

DISCUSSION

The single filament hot-grip creep results of this study were found to be comparable with literature
creep data measured on similar fiber specimens that were cold gripped outside of the furnace hot zone

(refs. 2 and 3). This hot-grip technique can be especially advantageous for high temperature tensile
studies in which only a short fiber is available. However this method needs to be further evaluated at

higher temperatures in which the zirconia-based cement may have adhesion limits. Also, for high stresses

and extremely brittle and stiff fibers, bending moments between the support wire and specimen may

cause premature fracture.

The relatively low temperature creep deformation with stress exponents of 3 to 1 for the Nextel 610

and Fiber FP fibers is believed to be related to grain boundary sliding controlled by grain boundary

diffusion. In general, the steady-state creep rate, _, can be expressed in terms of the tensile stress, a,
absolute temperature, T, and grain size, d, by the relation:

= A en (-qcreep/RT)d-P (2)

Here n is the stress exponent, p the grain size exponent, Qcreep the activation energy for creep, and A
the creep constant. Rachinger (ref. 6), and Cannon and Langdon (ref. 7) have analyzed the creep defor-
mation of polycrystalline materials with various creep mechanisms among which are grain boundary slid-

ing controlled by various diffusion mechanisms. These mechanisms differ by their characteristic n and p

values. In grain boundary sliding, stress exponents of n = 1 are usually associated with free condensation



of mobilevacancies at the grain boundaries with no diffusion limits (Nabarro-Herring or Coble creep).

However in the case of grain boundary sliding controlled by interface reaction diffusion, the mobility of

the vacancies are hindered, possibly by stress fields in the lattice induced by substitution or interstitial

atomic pdint defects, thereby resulting in n = 2.

Creep exponents and parameters for the two fibers are summarized in table II. The creep constant, A,
was determined assuming that the grain size influence (d -p in eq. (2)) is not known. For Fiber FP, the

low stress exponent of n _- 1, which gives a rise to a higher A constant, suggests creep by grain boundary

sliding controlled by unlimited diffusion. For Nextel 610, the stress exponent of n ,-, 3 suggests interface

reaction controlled grain boundary sliding which may be diffusion limited by the processing additives sil-
ica and hematite. Silica as a glass former might cause viscous flow, but this would result in creep expo-

nent of unity (ref. 7). Also no residual amorphous phase is found in the grain boundaries of the

Nextel 610. Although the observance of a stress exponent of greater than the unity is not clear at this

time, it may be due to the combined effect of the additives. In Nextel 610 the hematite has the same

crystal structure as alumina and preserves electrical neutrality; hence little misfit strain nor defects are

expected. However the silica with its tetravalent cation silicon may cause complex defects which have

higher activation energies for mobility than those created by doping with divalent cations, such as,

magnesium in the case of Fiber FP.

In general, ultra fine grained ceramic materials are more susceptible to creep deformation than coarse

grained materials. Creep rates increase as an inverse power, p, of grain size. Based on the tendency of
figure 5 at 1200 °C, the Nextel 610 has the highest creep rate, and the 1 to 3 #m bulk alumina the

lowest creep rate. The grain size of the polycrystalline alumina fibers and bulk alumina appear to effect

the steady-state creep rate by p -_ 2, as shown in figure 8. Based on creep theories (refs. 6 and 7) this

may be related with Nabarro-Herring type of creep, Rachinger sliding with a formation of triple-point

fold formation, or interface reaction controlled creep. Based on n -_ 1 for Fiber FP, it would appear that

the creep mechanism for the Fiber FP is grain boundary sliding controlled by Nabarro-Herring creep. On
the other hand, for Nextel 610, the observance of n -_ 3 and p ,-- 2 suggests that at least at low

temperatures, the creep mechanism is grain boundary sliding controlled by interface reaction creep. The

comparable creep rate of the Nextel 610 to that of the Fiber FP from 800 to 1050 °C might then be

explained in part by reduced Nextel 610 creep due to the interface reaction mechanism.

CONCLUSIONS

For times up to 100 hr, Nextel 610 has greater 0.2 percent creep strength below 1000 °C than

Fiber FP. The greater creep strength of Nextel 610 appears to be related to a higher stress dependence

for creep rate which may in turn be related to smaller grain size and/or impurity content. The stress and

grain size dependencies suggest Nextel 610 and Fiber FP creep rates are due to grain boundary sliding

controlled by interface reaction and Nabarro-Herring mechanisms, respectively.
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TABLE L--NOMINAL PROPERTIES OF

POLYCRYSTALLINE ALUMINA FIBERS

Fiber

Property

Manufacturer

Composition, wt. %

Impurities, wt. %

Average diameter,/_m

Elastic modulus at RT, GPa

Average grain size,nm

Nextel 610

3M

>99% a-Al20 s

0.2 to 0.3 SiO 2

0.4 to 0.7 Fe20 s
14

_,380

100

Fiber FP

Dupont

>99_ a-AI20 s

_0.3 MgO

2O

_380

30O

TABLE II.--STEADY-STATE CREEP PARAMETERS FOR

NEXTEL 610 AND FIBER FP ALUMINA FIBERS

Fiber

Nextel 610

Fiber FP

A Q

2.1 x 104 _460

4.9x109 kJ/mol

p n

2 _3

2 _1

Possible creep mechanism

Interface reaction

Nabarro-Herring or Coble
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(a) Nextel 610. 0.6 pm (b) Fiber FP.

Figure 1.--TEM micrographs of as-received polycrystalline (a) Nextei 610 and (b) Fiber FP, longitudinal sections.
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